施密特正交化
施密特正交化(Schmidt orthogonalization)是求欧氏空间正交基的一种方法。从欧氏空间任意线性无关的向量组α1,α2,……,αm出发,求得正交向量组β1,β2,……,βm,使由α1,α2,……,αm与向量组β1,β2,……,βm等价,再将正交向量组中每个向量经过单位化,就得到一个标准正交向量组,这种方法称为施密特正交化。
施密特正交化首先需要向量组b1,b2,b3...一定是线性无关的。一般解决的问题是特征向量,同一个特征值的特征向量不一定是线性无关的,但是不同特征值的特征向量一定是线性相关的。
欧几里得空间(Euclidean space),是指一类特殊的向量空间,对通常3维空间V3中的向量可以讨论长度、夹角等几何性质。它具有类似的几何性质。Rn连同运算<,>,称为一个欧几里得空间。更一般地,若V是R上向量空间,称V×V到R的一个满足一定条件的映射为内积,带有内积的空间称为欧几里得空间。若<a,β>=0,称a与β正交(垂直)。若V的一个基中的向量两两正交且长度为1,则称为标准正交基,V3中常用的直角坐标系就是标准正交基。每个n维欧几里得空间存在标准正交基,可由任意基改造而得。
上一篇:evan chandler
下一篇:没有了