运动鞋批发网 > 知识库 >

分子量测定

来源:运动鞋批发网时间:2024-05-22 23:26:33编辑:运动君

怎样鉴定蛋白质的分子量?

测定蛋白质分子量的常用方法:粘度法、凝胶过滤层析法、凝胶渗透色谱法、SDS-凝胶电泳、渗透压法、质谱法包括电喷雾离子化质谱技术和基质辅助激光解吸电离质谱技术、光散射法(多角度激光散射)、沉降法(超速离心法)。1、粘度法 一定温度条件下,高聚物稀溶液的粘度与其分子量之间呈正相关性,随着分子量的增大,聚合物溶液的粘度增大。通过测定高聚物稀溶液粘度随浓度的变化,即可计算出其平均分子量(粘均分子量)。 如果高聚物分子的分子量愈大,则它与溶剂间的接触表面也愈大,摩擦就大,表现出的特性粘度也大。特性粘度和分子量之间的经验关系式为:聚合物、溶剂性质有关,也和分子量大小有关。K值受温度的影响较明显,而值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值解在0.5~1 之间。K与的数值可通过其他绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定[η]。 在无限稀释条件下:优缺点:该方法操作简单、设备价格较低,通常不需要标准样品,但无法测定聚合物的分子量分布。 2、凝胶过滤层析法 对同一类型的化合物,洗脱特性与组分的分子量有关,流过凝胶柱时,按分子量大小顺序流出,分子量大的走在前面。Ve与分子量的关系可用下式表示: V e=K1—K2logMr K1与K2为常数,Mr为分子量,Ve也可用Ve—Vo(分离体积),Ve/Vo(相对保留体积),Ve/Vt(简化的洗脱体积,它受柱的填充情况的影响较小)或Kav代替,与分子量的关系同上式,只是常数不同。凝胶层析主要决定于溶质分子的大小,每一类型的化合物如球蛋白类,右旋糖酐类等都有它自己的特殊的选择曲线,可用以测定未知物的分子量,测定时以使用曲线的直线部分为宜。优缺点:凝胶层析技术操作方便,设备简单,样品用量少,周期短,重复性能好,条件温和,一般不引起生物活性物质的变化,而且有时不需要纯物质,用一粗制品即可,目前已得到相当广泛的应用。凝胶层析法测定分子量也有一定的局限性,在pH6—8的范围内,线性关系比较好,但在极端pH时,一般蛋白质有可能因变性而偏离。糖蛋白在含糖量超过5%时,测得分子量比真实的要大,铁蛋白则与此相反,测得的分子量比真实的要小。 3、凝胶渗透色谱法 分子量的多分散性是高聚物的基本特征之一。聚合物的性能与其分子量和分子量分布密切相关。SEC法是按分子尺寸大小分离的,即淋出体积与分子线团体积有关,利用Flory的粘度公式: K1、K2、α1、α2可以从手册查到,从而由第一种聚合物的M-Ve校正曲线,换算成第二种聚合物的M-Ve曲线,即从聚苯乙稀标样作出的M-Ve校正曲线,可以换算成各种聚合物的校正曲线。优缺点:凝胶渗透色谱法分离速度快、分析时间短、重现性好,进样量少、自动化程度高。但设备投入较大,价格较高。 4、SDS-凝胶电泳法 SDS是十二烷基硫酸钠的简称,它是一种阴离子表面活性剂,加入到电泳系统中能使蛋白质的氢键和疏水键打开,并结合到蛋白质分子上(在一定条件下,大多数蛋白质与SDS的结合比为1.4gSDS/1g蛋白质),使各种蛋白质-SDS复合物都带上相同密度的负电荷,其数量远远超过了蛋白质分子原有的电荷量,从而使其电泳迁移率只取决于分子大小这一因素,根据标准蛋白质分子量的对数和迁移率所作的标准曲线,可求得未知物的分子量。优缺点:实验成本较低,仪器设备也相对很简单,一套电泳装置即可。但是精确程度相对较低,好的电泳图谱需要一定的技术。 5、渗透压法 在一种理想溶液中,渗透压与溶质浓度成正比。但是实际上蛋白质溶液与理想溶液有较大的偏差。在溶质浓度不大时,它们的关系可用下式表示:当c 趋向于0时,RTKc 趋向于0,但π/c 不趋向于0,而是趋向于一定值。测定几个不同浓度下的渗透压,以π/c对c作图,并外推至c为0时的π/c,再代入上式求得Mr。优缺点:操作简单、快捷,实验成本低,但准确度较差,受外界温度影响较大,且要准确配置蛋白质溶液。6、超速离心沉降法 利用超速离心沉降法测蛋白质的分子量是在较低离心转速下进行的(8000~20000r/min),离心开始时,分子颗粒发生沉降,一段时间以后,沉降的结果造成了浓度梯度,因而产生了蛋白质分子反向扩散运动,当反向扩散与离心沉降达到平衡时,浓度梯度就固定不变了。 7、光散射法 主要基于染料阴离子在蛋白质等电点前与肽链上带正电荷的基团上的结合作用.。此时生色团聚集于蛋白质分子上引起共振散射光增强,它与核酸不同的是生色团必须是带负电荷的阴离子。 光散射计算的基本公式:8、电喷雾离子化质谱技术 电喷雾离子化质谱技术(ESI-MS)是在毛细管的出口处施加一高电压,所产生的高电场使从毛细管流出的液体雾化成细小的带电液滴,随着溶剂蒸发,液滴表面的电荷强度逐渐增大,最后液滴崩解为大量带一个或多个电荷的离子,致使分析物以单电荷或多电荷离子的形式进入气相的质谱技术。ESI-MS 测定蛋白质大分子是根据一簇多电荷的质谱峰群,通过解卷积的方式计算得到蛋白质的分子量,由于ESI-MS可以产生多电荷峰,因此使得测试的分子质量范围大大扩大。优缺点:(1)对样品的消耗少,不会造成样品的大量浪费;(2)对样品分子质量测试灵敏度、分辨力和准确度都相当高;(3)能够方便地与多种分离技术联用,如毛细管电泳、高效液相色谱等,是解决非挥发性、热不稳定性、极性强的复杂组分化合物的定性定量的高灵敏度检测方法。 9、基质辅助激光解吸电离质谱技术 基质辅助激光解吸电离质谱技术(MALDI-MS)是将待测物悬浮或溶解在一个基体中,基体与待测物形成混晶,当基体吸收激光的能量后,均匀传递给待测物,使待测物瞬间气化并离子化。基体的作用在于保护待测物不会因过强的激光能量导致化合物被破坏。MALDI的原理是用激光照射样品与基质形成的共结晶薄膜,基质从激光中吸收能量传递给生物分子,而电离过程中将质子转移到生物分子或从生物分子得到质子,而使生物分子电离的过程。TOF的原理是离子在电场作用下加速飞过飞行管道,根据到达检测器的飞行时间不同而被检测即测定离子的质荷比(M/Z)与离子的飞行时间成正比,检测离子。优缺点:(1)同ESI-MS 一样对样品的消耗很少;(2)随着质量分析器的不断改进、新的基质的不断发现和应用以及延迟萃取技术的使用,使得MALDI-MS 的最高分辨率不断提高,甚至超过ESI-MS;(3)MALDI-MS 单电荷峰占主要部分,碎片峰少,非常有利于对复杂混合物的分析,且能忍受较高浓度的盐、缓冲剂和其他难挥发成分,降低了对样品预处理的要求;(4)MALDI-TOF 质谱对生物大分子分子量的测定范围是所有测试技术中最广的。

如何测蛋白质的分子量?

测定蛋白质分子量的常用方法:粘度法、凝胶过滤层析法、凝胶渗透色谱法、SDS-凝胶电泳、渗透压法、质谱法包括电喷雾离子化质谱技术和基质辅助激光解吸电离质谱技术、光散射法(多角度激光散射)、沉降法(超速离心法)。1、粘度法 一定温度条件下,高聚物稀溶液的粘度与其分子量之间呈正相关性,随着分子量的增大,聚合物溶液的粘度增大。通过测定高聚物稀溶液粘度随浓度的变化,即可计算出其平均分子量(粘均分子量)。 如果高聚物分子的分子量愈大,则它与溶剂间的接触表面也愈大,摩擦就大,表现出的特性粘度也大。特性粘度和分子量之间的经验关系式为:聚合物、溶剂性质有关,也和分子量大小有关。K值受温度的影响较明显,而值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值解在0.5~1 之间。K与的数值可通过其他绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定[η]。 在无限稀释条件下:优缺点:该方法操作简单、设备价格较低,通常不需要标准样品,但无法测定聚合物的分子量分布。 2、凝胶过滤层析法 对同一类型的化合物,洗脱特性与组分的分子量有关,流过凝胶柱时,按分子量大小顺序流出,分子量大的走在前面。Ve与分子量的关系可用下式表示: V e=K1—K2logMr K1与K2为常数,Mr为分子量,Ve也可用Ve—Vo(分离体积),Ve/Vo(相对保留体积),Ve/Vt(简化的洗脱体积,它受柱的填充情况的影响较小)或Kav代替,与分子量的关系同上式,只是常数不同。凝胶层析主要决定于溶质分子的大小,每一类型的化合物如球蛋白类,右旋糖酐类等都有它自己的特殊的选择曲线,可用以测定未知物的分子量,测定时以使用曲线的直线部分为宜。优缺点:凝胶层析技术操作方便,设备简单,样品用量少,周期短,重复性能好,条件温和,一般不引起生物活性物质的变化,而且有时不需要纯物质,用一粗制品即可,目前已得到相当广泛的应用。凝胶层析法测定分子量也有一定的局限性,在pH6—8的范围内,线性关系比较好,但在极端pH时,一般蛋白质有可能因变性而偏离。糖蛋白在含糖量超过5%时,测得分子量比真实的要大,铁蛋白则与此相反,测得的分子量比真实的要小。 3、凝胶渗透色谱法 分子量的多分散性是高聚物的基本特征之一。聚合物的性能与其分子量和分子量分布密切相关。SEC法是按分子尺寸大小分离的,即淋出体积与分子线团体积有关,利用Flory的粘度公式: K1、K2、α1、α2可以从手册查到,从而由第一种聚合物的M-Ve校正曲线,换算成第二种聚合物的M-Ve曲线,即从聚苯乙稀标样作出的M-Ve校正曲线,可以换算成各种聚合物的校正曲线。优缺点:凝胶渗透色谱法分离速度快、分析时间短、重现性好,进样量少、自动化程度高。但设备投入较大,价格较高。 4、SDS-凝胶电泳法 SDS是十二烷基硫酸钠的简称,它是一种阴离子表面活性剂,加入到电泳系统中能使蛋白质的氢键和疏水键打开,并结合到蛋白质分子上(在一定条件下,大多数蛋白质与SDS的结合比为1.4gSDS/1g蛋白质),使各种蛋白质-SDS复合物都带上相同密度的负电荷,其数量远远超过了蛋白质分子原有的电荷量,从而使其电泳迁移率只取决于分子大小这一因素,根据标准蛋白质分子量的对数和迁移率所作的标准曲线,可求得未知物的分子量。优缺点:实验成本较低,仪器设备也相对很简单,一套电泳装置即可。但是精确程度相对较低,好的电泳图谱需要一定的技术。 5、渗透压法 在一种理想溶液中,渗透压与溶质浓度成正比。但是实际上蛋白质溶液与理想溶液有较大的偏差。在溶质浓度不大时,它们的关系可用下式表示:当c 趋向于0时,RTKc 趋向于0,但π/c 不趋向于0,而是趋向于一定值。测定几个不同浓度下的渗透压,以π/c对c作图,并外推至c为0时的π/c,再代入上式求得Mr。优缺点:操作简单、快捷,实验成本低,但准确度较差,受外界温度影响较大,且要准确配置蛋白质溶液。6、超速离心沉降法 利用超速离心沉降法测蛋白质的分子量是在较低离心转速下进行的(8000~20000r/min),离心开始时,分子颗粒发生沉降,一段时间以后,沉降的结果造成了浓度梯度,因而产生了蛋白质分子反向扩散运动,当反向扩散与离心沉降达到平衡时,浓度梯度就固定不变了。 7、光散射法 主要基于染料阴离子在蛋白质等电点前与肽链上带正电荷的基团上的结合作用.。此时生色团聚集于蛋白质分子上引起共振散射光增强,它与核酸不同的是生色团必须是带负电荷的阴离子。 光散射计算的基本公式:8、电喷雾离子化质谱技术 电喷雾离子化质谱技术(ESI-MS)是在毛细管的出口处施加一高电压,所产生的高电场使从毛细管流出的液体雾化成细小的带电液滴,随着溶剂蒸发,液滴表面的电荷强度逐渐增大,最后液滴崩解为大量带一个或多个电荷的离子,致使分析物以单电荷或多电荷离子的形式进入气相的质谱技术。ESI-MS 测定蛋白质大分子是根据一簇多电荷的质谱峰群,通过解卷积的方式计算得到蛋白质的分子量,由于ESI-MS可以产生多电荷峰,因此使得测试的分子质量范围大大扩大。优缺点:(1)对样品的消耗少,不会造成样品的大量浪费;(2)对样品分子质量测试灵敏度、分辨力和准确度都相当高;(3)能够方便地与多种分离技术联用,如毛细管电泳、高效液相色谱等,是解决非挥发性、热不稳定性、极性强的复杂组分化合物的定性定量的高灵敏度检测方法。 9、基质辅助激光解吸电离质谱技术 基质辅助激光解吸电离质谱技术(MALDI-MS)是将待测物悬浮或溶解在一个基体中,基体与待测物形成混晶,当基体吸收激光的能量后,均匀传递给待测物,使待测物瞬间气化并离子化。基体的作用在于保护待测物不会因过强的激光能量导致化合物被破坏。MALDI的原理是用激光照射样品与基质形成的共结晶薄膜,基质从激光中吸收能量传递给生物分子,而电离过程中将质子转移到生物分子或从生物分子得到质子,而使生物分子电离的过程。TOF的原理是离子在电场作用下加速飞过飞行管道,根据到达检测器的飞行时间不同而被检测即测定离子的质荷比(M/Z)与离子的飞行时间成正比,检测离子。优缺点:(1)同ESI-MS 一样对样品的消耗很少;(2)随着质量分析器的不断改进、新的基质的不断发现和应用以及延迟萃取技术的使用,使得MALDI-MS 的最高分辨率不断提高,甚至超过ESI-MS;(3)MALDI-MS 单电荷峰占主要部分,碎片峰少,非常有利于对复杂混合物的分析,且能忍受较高浓度的盐、缓冲剂和其他难挥发成分,降低了对样品预处理的要求;(4)MALDI-TOF 质谱对生物大分子分子量的测定范围是所有测试技术中最广的。

测定蛋白质分子量的常用方法

蛋白定量的测试方法有很多种,其中较为常见的有五种,分别是Bradford法、Bradford斑点试验、Coomassie 斑点试验、紫外分光度检测法及BCA法这五种。 在生化实验中,对样品中的蛋白质进行准确可靠的定量分析,是经常进行的一项非常重要的工作。 蛋白质是一种十分重要的生物大分子,它的种类很多,结构不均一,分子量又相差很大,功能各异,这样就给建立一个理想而又通用的蛋白质定量分析的方法带来了许多具体的因难。 扩展资料 蛋白定量分析也就涉及到生产科研的多个领域及行业,也是生物学科、食品检验及掺假掺伪、临床检验、诊断疾病和质量检验中最常见的方法。 蛋白定量是生物学实验不可缺少的一部分。 为验证细胞裂解是否成功,或为了将多个样品进行平行实验比较或标准化保存,需对细胞裂解液进行蛋白定量。 为了判定蛋白的产量,需对纯化好的蛋白进行定量。 为了将纯化好的蛋白用生物素或者报告酶进行标记,同样需首先对蛋白样品进行定量,以保证标记反应在适当的化学浓度下进行。

如何测定蛋白质分子量?

测定蛋白质分子量的常用方法:粘度法、凝胶过滤层析法、凝胶渗透色谱法、SDS-凝胶电泳、渗透压法、质谱法包括电喷雾离子化质谱技术和基质辅助激光解吸电离质谱技术、光散射法(多角度激光散射)、沉降法(超速离心法)。1、粘度法 一定温度条件下,高聚物稀溶液的粘度与其分子量之间呈正相关性,随着分子量的增大,聚合物溶液的粘度增大。通过测定高聚物稀溶液粘度随浓度的变化,即可计算出其平均分子量(粘均分子量)。 如果高聚物分子的分子量愈大,则它与溶剂间的接触表面也愈大,摩擦就大,表现出的特性粘度也大。特性粘度和分子量之间的经验关系式为:聚合物、溶剂性质有关,也和分子量大小有关。K值受温度的影响较明显,而值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值解在0.5~1 之间。K与的数值可通过其他绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定[η]。 在无限稀释条件下:优缺点:该方法操作简单、设备价格较低,通常不需要标准样品,但无法测定聚合物的分子量分布。 2、凝胶过滤层析法 对同一类型的化合物,洗脱特性与组分的分子量有关,流过凝胶柱时,按分子量大小顺序流出,分子量大的走在前面。Ve与分子量的关系可用下式表示: V e=K1—K2logMr K1与K2为常数,Mr为分子量,Ve也可用Ve—Vo(分离体积),Ve/Vo(相对保留体积),Ve/Vt(简化的洗脱体积,它受柱的填充情况的影响较小)或Kav代替,与分子量的关系同上式,只是常数不同。凝胶层析主要决定于溶质分子的大小,每一类型的化合物如球蛋白类,右旋糖酐类等都有它自己的特殊的选择曲线,可用以测定未知物的分子量,测定时以使用曲线的直线部分为宜。优缺点:凝胶层析技术操作方便,设备简单,样品用量少,周期短,重复性能好,条件温和,一般不引起生物活性物质的变化,而且有时不需要纯物质,用一粗制品即可,目前已得到相当广泛的应用。凝胶层析法测定分子量也有一定的局限性,在pH6—8的范围内,线性关系比较好,但在极端pH时,一般蛋白质有可能因变性而偏离。糖蛋白在含糖量超过5%时,测得分子量比真实的要大,铁蛋白则与此相反,测得的分子量比真实的要小。 3、凝胶渗透色谱法 分子量的多分散性是高聚物的基本特征之一。聚合物的性能与其分子量和分子量分布密切相关。SEC法是按分子尺寸大小分离的,即淋出体积与分子线团体积有关,利用Flory的粘度公式: K1、K2、α1、α2可以从手册查到,从而由第一种聚合物的M-Ve校正曲线,换算成第二种聚合物的M-Ve曲线,即从聚苯乙稀标样作出的M-Ve校正曲线,可以换算成各种聚合物的校正曲线。优缺点:凝胶渗透色谱法分离速度快、分析时间短、重现性好,进样量少、自动化程度高。但设备投入较大,价格较高。 4、SDS-凝胶电泳法 SDS是十二烷基硫酸钠的简称,它是一种阴离子表面活性剂,加入到电泳系统中能使蛋白质的氢键和疏水键打开,并结合到蛋白质分子上(在一定条件下,大多数蛋白质与SDS的结合比为1.4gSDS/1g蛋白质),使各种蛋白质-SDS复合物都带上相同密度的负电荷,其数量远远超过了蛋白质分子原有的电荷量,从而使其电泳迁移率只取决于分子大小这一因素,根据标准蛋白质分子量的对数和迁移率所作的标准曲线,可求得未知物的分子量。优缺点:实验成本较低,仪器设备也相对很简单,一套电泳装置即可。但是精确程度相对较低,好的电泳图谱需要一定的技术。 5、渗透压法 在一种理想溶液中,渗透压与溶质浓度成正比。但是实际上蛋白质溶液与理想溶液有较大的偏差。在溶质浓度不大时,它们的关系可用下式表示:当c 趋向于0时,RTKc 趋向于0,但π/c 不趋向于0,而是趋向于一定值。测定几个不同浓度下的渗透压,以π/c对c作图,并外推至c为0时的π/c,再代入上式求得Mr。优缺点:操作简单、快捷,实验成本低,但准确度较差,受外界温度影响较大,且要准确配置蛋白质溶液。6、超速离心沉降法 利用超速离心沉降法测蛋白质的分子量是在较低离心转速下进行的(8000~20000r/min),离心开始时,分子颗粒发生沉降,一段时间以后,沉降的结果造成了浓度梯度,因而产生了蛋白质分子反向扩散运动,当反向扩散与离心沉降达到平衡时,浓度梯度就固定不变了。 7、光散射法 主要基于染料阴离子在蛋白质等电点前与肽链上带正电荷的基团上的结合作用.。此时生色团聚集于蛋白质分子上引起共振散射光增强,它与核酸不同的是生色团必须是带负电荷的阴离子。 光散射计算的基本公式:8、电喷雾离子化质谱技术 电喷雾离子化质谱技术(ESI-MS)是在毛细管的出口处施加一高电压,所产生的高电场使从毛细管流出的液体雾化成细小的带电液滴,随着溶剂蒸发,液滴表面的电荷强度逐渐增大,最后液滴崩解为大量带一个或多个电荷的离子,致使分析物以单电荷或多电荷离子的形式进入气相的质谱技术。ESI-MS 测定蛋白质大分子是根据一簇多电荷的质谱峰群,通过解卷积的方式计算得到蛋白质的分子量,由于ESI-MS可以产生多电荷峰,因此使得测试的分子质量范围大大扩大。优缺点:(1)对样品的消耗少,不会造成样品的大量浪费;(2)对样品分子质量测试灵敏度、分辨力和准确度都相当高;(3)能够方便地与多种分离技术联用,如毛细管电泳、高效液相色谱等,是解决非挥发性、热不稳定性、极性强的复杂组分化合物的定性定量的高灵敏度检测方法。 9、基质辅助激光解吸电离质谱技术 基质辅助激光解吸电离质谱技术(MALDI-MS)是将待测物悬浮或溶解在一个基体中,基体与待测物形成混晶,当基体吸收激光的能量后,均匀传递给待测物,使待测物瞬间气化并离子化。基体的作用在于保护待测物不会因过强的激光能量导致化合物被破坏。MALDI的原理是用激光照射样品与基质形成的共结晶薄膜,基质从激光中吸收能量传递给生物分子,而电离过程中将质子转移到生物分子或从生物分子得到质子,而使生物分子电离的过程。TOF的原理是离子在电场作用下加速飞过飞行管道,根据到达检测器的飞行时间不同而被检测即测定离子的质荷比(M/Z)与离子的飞行时间成正比,检测离子。优缺点:(1)同ESI-MS 一样对样品的消耗很少;(2)随着质量分析器的不断改进、新的基质的不断发现和应用以及延迟萃取技术的使用,使得MALDI-MS 的最高分辨率不断提高,甚至超过ESI-MS;(3)MALDI-MS 单电荷峰占主要部分,碎片峰少,非常有利于对复杂混合物的分析,且能忍受较高浓度的盐、缓冲剂和其他难挥发成分,降低了对样品预处理的要求;(4)MALDI-TOF 质谱对生物大分子分子量的测定范围是所有测试技术中最广的。

多糖含量的测定

多糖含量的测定:高效凝胶渗透色谱法(HPGPC)分子量检测分析:以怀同分子量的右旋糖酐为标准品,采彩HPGPC法,使用高效凝胶渗透色谱串联柱,差检测器检测,采用GPC软件对结果进行分析,以标准品相对分子质量的对数值为纵坐标。以相应色谱峰的保留时间为横坐标进行线性回归,得归方程,技术峰位分子量(Mp) 、重均分子量(Mw)和数均分子量(Mn)以吸分量分布指数D (Mw/Mn), 盱 测定多糖分子量和检测多糖纯度。总结:凝胶色谱示差多角度激光光散射(GPC-RI-MALS法) 分子量检测分析:测得大分子绝对分子量分子旋转半径以及分子分布等,还可获得多糖的聚集状态信息(棒状、无规则线团或球形),兼具色谱法和光散射法优点。在不用标准品作校正曲线情况下,便可直接测定高分子物质,能快速、准确地测出高分子物质的绝对重均分子量(Mw)、数均分子量 (Mn)、Z 均分子量(Mz)、分子分布及分子的分支、聚集态等。

测多糖分子量有什么意义

测定多糖分子量对于多糖的结构解析、功能研究、质量控制和生物活性评估具有重要意义。多糖的分子量可以提供有关其结构的重要信息。多糖的分子量与其聚合度(分子中糖基的数量)直接相关,通过测定多糖的分子量,可以确定其聚合度和多糖链的长度。这对于了解多糖的结构、构象和功能非常重要。多糖的分子量与其在生物体内的功能密切相关。多糖的分子量可以影响其溶解性、黏度、生物活性等特性。通过测定多糖的分子量,可以评估其在生物体内的功能表现,如其在细胞信号传递、免疫调节、药物传递等方面的作用。多糖在医药、食品、化妆品等领域具有广泛应用。测定多糖的分子量可以用于质量控制,确保产品的一致性和稳定性。通过检测多糖分子量的变化,可以监测产品的质量,并对其生产过程进行优化和调整。多糖的生物活性通常与其分子量密切相关。在许多生物活性研究中,需要确定多糖的适当分子量范围,以确保其具有期望的生物活性。测定多糖的分子量可以帮助确定最佳的生物活性范围,并为进一步的研究和应用提供指导。

高分子测分子量的方法都有哪些?

  1,端基分析法。通过化学分析的方法测特定的端基含量从而推导出分子量,前提是必须对高分子结构有充分的了解,它还可以用于支链数目的测定。使用这种方法分子量不一般不能太大。\x0d\x0a  2,沸点升高和冰点降低。这是利用稀溶液的依数性测定溶质分子量的方法,是经典的物理化学方法。溶剂中加入不挥发性的溶质后,溶液的蒸气压下降,导致溶液的沸点比纯溶剂的高,溶液的冰点比溶剂的低。这种方法没用过,对温差的测量精度要求很高。\x0d\x0a  3,膜渗透压。用半透膜通过渗透压测定的方法,也应该是一种物理化学方法。\x0d\x0a  4,气相渗透法(VPO)。利用纯溶剂与加入溶质的溶液饱和蒸气压不同来测定分子量。测出的是数均分子量。\x0d\x0a  5,光散射/小角激光光散射(LALLS)。这两个方法只是仪器,数据处理和所用光源等方面有差异,原理差不多的。这种方法比较常用,而且仪器现在也发展到了一定水平,是测试高分子绝对分子量最有效的方法。\x0d\x0a  6,超速离心沉降。很复杂,最先用于蛋白质分子的测量。是一种相对方法。\x0d\x0a  7,凝胶色谱法(GPC)。很常用,根据不同大小的分子在介质中的停留时间不同来测量分子量。是一种相对方法,须结合其它方法的配合。\x0d\x0a  8,粘度法。利用玻璃粘度计(乌式粘度计,奥式粘度计)增比粘度,然后外推特性粘数,根据Mark-Houwink方程算出分子量,是最经济的方法吧,而且重新度很好。水溶性高分子一般都用这种方法测量分子量,也是一种相对方法。


测量高分子的分子量有哪些方法

1,端基分析法。通过化学分析的方法测特定的端基含量从而推导出分子量,前提是必须对高分子结构有充分的了解,它还可以用于支链数目的测定。使用这种方法分子量不一般不能太大。
  2,沸点升高和冰点降低。这是利用稀溶液的依数性测定溶质分子量的方法,是经典的物理化学方法。溶剂中加入不挥发性的溶质后,溶液的蒸气压下降,导致溶液的沸点比纯溶剂的高,溶液的冰点比溶剂的低。这种方法没用过,对温差的测量精度要求很高。
  3,膜渗透压。用半透膜通过渗透压测定的方法,也应该是一种物理化学方法。
  4,气相渗透法(VPO)。利用纯溶剂与加入溶质的溶液饱和蒸气压不同来测定分子量。测出的是数均分子量。
  5,光散射/小角激光光散射(LALLS)。这两个方法只是仪器,数据处理和所用光源等方面有差异,原理差不多的。这种方法比较常用,而且仪器现在也发展到了一定水平,是测试高分子绝对分子量最有效的方法。
  6,超速离心沉降。很复杂,最先用于蛋白质分子的测量。是一种相对方法。
  7,凝胶色谱法(GPC)。很常用,根据不同大小的分子在介质中的停留时间不同来测量分子量。是一种相对方法,须结合其它方法的配合。
  8,粘度法。利用玻璃粘度计(乌式粘度计,奥式粘度计)增比粘度,然后外推特性粘数,根据Mark-Houwink方程算出分子量,是最经济的方法吧,而且重新度很好。水溶性高分子一般都用这种方法测量分子量,也是一种相对方法。


测定相对分子量,何为条件适宜

是相对分子质量吧化学式中各原子的相对原子质量的总和就是相对分子质量,用符号Mr表示。
  例1, 计算H2O的相对分子质量。
  解:∵H2O中有两个H原子和一个O原子
  ∴应计算两个H原子的相对原子质量和一个氧原子的相对原子质量之和
  H2O的相对分子质量=1×2+16×1=18
  (相对分子质量的单位为1,一般不写出)
  例2, 计算2H2O的相对分子质量。
  解:2H2O的相对分子质量=2×(2×1+16)=36
  例3,计算H2SO4的相对分子质量。
  解:H2SO4的相对分子质量=1x2+32+16x4=98
  相对分子质量最小的氧化物的化学式H2O


不属于测定蛋白质相对分子质量的常用方法的是

不属于测定蛋白质相对分子质量的常用方法的是X光衍射。常用的方法包括:一维凝胶法: 使用凝胶电泳分离蛋白质,然后测定蛋白质含量。二维凝胶法:使用两种不同的凝胶溶剂分离蛋白质,然后测定蛋白质含量。质谱法: 使用质谱仪测定蛋白质的分子质量。分子量滤器法:使用分子量滤器测定蛋白质的分子质量。光谱法:使用紫外光谱仪或可见光谱仪测定蛋白质的含量。蛋白质(protein)是组成人体一切细胞、组织的重要成分。机体所有重要的组成部分都需要有蛋白质的参与。一般说,蛋白质约占人体全部质量的18%,最重要的还是其与生命现象有关。蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。氨基酸是蛋白质的基本组成单位。它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸(Amino acid)按不同比例组合而成的,并在体内不断进行代谢与更新。

不属于测定蛋白质相对分子质量的方法

不属于测定蛋白质相对分子质量的方法的是X光衍射。常用的方法包括:一维凝胶法: 使用凝胶电泳分离蛋白质,然后测定蛋白质含量。二维凝胶法:使用两种不同的凝胶溶剂分离蛋白质,然后测定蛋白质含量。质谱法: 使用质谱仪测定蛋白质的分子质量。分子量滤器法:使用分子量滤器测定蛋白质的分子质量。光谱法:使用紫外光谱仪或可见光谱仪测定蛋白质的含量。蛋白质(protein)是组成人体一切细胞、组织的重要成分。机体所有重要的组成部分都需要有蛋白质的参与。一般说,蛋白质约占人体全部质量的18%,最重要的还是其与生命现象有关。蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。氨基酸是蛋白质的基本组成单位。它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸(Amino acid)按不同比例组合而成的,并在体内不断进行代谢与更新。

测定原子量或分子量的方法有什么及原理个是什么

分子量,组成分子的所有原子的原子量的总和。
在准确地推出化学式以前,一个亟待解决的问题就是分子的性质,特别是对于分子量的准确把握。同分异构表明具有相同实验式不同分子量的聚合物使问题变得更为复杂。由此可知一个确信无疑的分子量对于写出化全物的分子式的重要性。
19世纪中期,分子量的计算仍然是不可靠的,揣测和人为规定在这时期是司空见惯的,甚至连碳和氧的原子量也提法不一。
这时,有一位化学家看到了阿佛加德罗假说可以提供一条线索把诸多麻烦的事实穿在一起,这位化学家就是意大利人康尼查罗。1826年,康尼查罗生于意大利,幼时长于算学,15岁学医,19岁到拿波斯学习化学,21岁参加了西西里起义,失败之后侨居法国,开始了长期的化学研究工作。
1858年,康尼查罗在科学杂志上发表了《经学哲理课程提纲》一文,概述了阿佛加德罗假说在教学中的应用。他根据水银及其挥发性化合物蒸气密度的测定,建议将日拉尔所取得的原子量增加一倍。又根据汞的化合物与其他金属化合物有相似的地方,建议将铜、锌和锡的原子量加倍,康尼查罗根据金属有机物蒸气密度的测定结果和另外的实验资料,提出了必须改进许多金属的原子量,以及大量金属与基化合能力的资料统计。正确分子量的提供,是在康尼查罗论证佛加罗德罗假说的正确性时做出一个贡献,这一工作也使阿氏假说得到了新生。
康尼查罗指出,应用阿佛加德罗和安培的假说,即使在物质的组成尚不知道情况下,也可以测定它的分子量。根据上述假说,分子量与气态物质的密度成正比。康尼查罗在测定物质分子量时,选取气体中最轻的氢气作为比较的基准。他规定氢气的密度为2,因此,氢的分子量就是2.因为他认识到氢分子中含有2个氢原子,如果规定氢分子量为1作为基准,氢的原子量就将是1/2了。
康尼查罗在测定分子量的基础上,结合化学分析的结果,提出了一个合理的确定原子量的方案,取得了很好的效果。在化学理论发展中康尼查罗做出了很大贡献。值得指出的是,测定分子量以及限定原子、分子等概念的严格定义,是他多年从事教学工作的结果。然而,遗憾的是康尼查罗的论文发表后,并未引起应有的重视。


高分子测分子量的方法都有哪些

  1,端基分析法。通过化学分析的方法测特定的端基含量从而推导出分子量,前提是必须对高分子结构有充分的了解,它还可以用于支链数目的测定。使用这种方法分子量不一般不能太大。
  2,沸点升高和冰点降低。这是利用稀溶液的依数性测定溶质分子量的方法,是经典的物理化学方法。溶剂中加入不挥发性的溶质后,溶液的蒸气压下降,导致溶液的沸点比纯溶剂的高,溶液的冰点比溶剂的低。这种方法没用过,对温差的测量精度要求很高。
  3,膜渗透压。用半透膜通过渗透压测定的方法,也应该是一种物理化学方法。
  4,气相渗透法(VPO)。利用纯溶剂与加入溶质的溶液饱和蒸气压不同来测定分子量。测出的是数均分子量。
  5,光散射/小角激光光散射(LALLS)。这两个方法只是仪器,数据处理和所用光源等方面有差异,原理差不多的。这种方法比较常用,而且仪器现在也发展到了一定水平,是测试高分子绝对分子量最有效的方法。
  6,超速离心沉降。很复杂,最先用于蛋白质分子的测量。是一种相对方法。
  7,凝胶色谱法(GPC)。很常用,根据不同大小的分子在介质中的停留时间不同来测量分子量。是一种相对方法,须结合其它方法的配合。
  8,粘度法。利用玻璃粘度计(乌式粘度计,奥式粘度计)增比粘度,然后外推特性粘数,根据Mark-Houwink方程算出分子量,是最经济的方法吧,而且重新度很好。水溶性高分子一般都用这种方法测量分子量,也是一种相对方法。


分子量较小的聚合物用什么方法测试方法比较好

优点就是方便,不必要使用什么复杂的仪器,就可以粗略估计高聚物分子量大小,剩时剩力.但要有需要测量物质的Mark-Houwink常数。 缺点其实很大,由于高聚物分子量并不是一个定值,而是一个分子量分布宽度,所以当测量时的一个很小误差可能会对高聚物的分子量最终影响很大,特别是相对分子量低的物质。分子量分布稍微宽点将导致Mark-Houwink方程不在适用.此时测量出来的高聚物的分子量误差极大。 而且高聚物一般不是一种物质,是一组分子量大小不同的一组物质,利用Mark-Houwink方程测量时的误差会明显增大,特别是自制低分子量高聚物时,有时Mark-Houwink方程完全不适用. 这就是GPC的价值,通过GPC测定的分子量是质均分子量和数均分子量,及分子量分布宽度,一般情况下,Mark-Houwink方程给出的黏均分子量应该在数均分子量和质均分子量之间,但对于低分子量高聚物,测定结果表明黏均分子量大于质均分子量,这显然是不符合高聚物分子量的一般规律。其原因就是Mark-Houwink方程的两个基本参数k与a此时不适用. 我曾经做低分子量聚乙烯醇时就遇到过这个问题。 所以建议无论怎样,去做下GPC来鉴定物质分子量,此法比较合理有效。


测定蛋白质分子量的常用方法

蛋白定量的测试方法有很多种,其中较为常见的有五种,分别是Bradford法、Bradford斑点试验、Coomassie斑点试验、紫外分光度检测法及BCA法这五种。在生化实验中,对样品中的蛋白质进行准确可靠的定量分析,是经常进行的一项非常重要的工作。蛋白质是一种十分重要的生物大分子,它的种类很多,结构不均一,分子量又相差很大,功能各异,这样就给建立一个理想而又通用的蛋白质定量分析的方法带来了许多具体的因难。扩展资料蛋白定量分析也就涉及到生产科研的多个领域及行业,也是生物学科、食品检验及掺假掺伪、临床检验、诊断疾病和质量检验中最常见的方法。蛋白定量是生物学实验不可缺少的一部分。为验证细胞裂解是否成功,或为了将多个样品进行平行实验比较或标准化保存,需对细胞裂解液进行蛋白定量。为了判定蛋白的产量,需对纯化好的蛋白进行定量。为了将纯化好的蛋白用生物素或者报告酶进行标记,同样需首先对蛋白样品进行定量,以保证标记反应在适当的化学浓度下进行。参考资料来源:百度百科-蛋白定量

上一篇:红旗l5全球首撞

下一篇:没有了

相关推荐

热门头条