运动鞋批发网 > 知识库 >

线线垂直判定定理

来源:运动鞋批发网时间:2023-10-02 05:06:53编辑:运动君

线线垂直判定定理

1、线面垂直判定定理:如果一条直线与平面内两条相交直线都垂直,那么这条直线与这个平面垂直。注意关键词“相交”,如果是平行直线,则无法判定线面垂直。

2、线面垂直性质定理:

(1)如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。

(2)经过空间内一点,有且只有一条直线垂直已知平面。

(3)如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。

(4)垂直于同一平面的两条直线平行。

(5)推论:空间内如果两条直线都与第三条直线平行,那么这两条直线平行。(该推论意味着平行线的传递性不仅在平面几何上,在空间几何上也成立。

线面垂直的判定定理及其证明

判定定理:如果一条直线与平面内两条相交直线都垂直,那么这条直线与这个平面垂直。

证明:设有一直线l与面S上两条相交直线AB、CD都垂直,则l⊥面S 假设l不垂直于面S,则要么l∥S,要么斜交于S且夹角不等于90。 当l∥S时,则l不可能与AB和CD都垂直。这是因为当l⊥AB时,过l任意作一个平面R与S交于m,则由线面平行的性质可知m∥l ∴m⊥AB 又∵l⊥CD ∴m⊥CD ∴AB∥CD,与已知条件矛盾。 当l斜交S时,过交点在S内作一直线n⊥l,则n和l构成一个新的平面T,且T和S斜交(若T⊥S,则n是两平面交线。由面面垂直的性质可知l⊥S,与l斜交S矛盾)。 ∵l⊥AB ∴AB∥n ∵l⊥CD ∴CD∥n ∴AB∥CD,与已知条件矛盾。 综上,l⊥S

扩展资料:

一些基本的性质:

1、同位角相等两直线平行:在同一平面内,两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。也可以简单的说成:

2、内错角相等两直线平行:在同一平面内,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。也可以简单的说成:

3、同旁内角互补两直线平行。

上一篇:江南水乡是哪个城市

下一篇:没有了

相关推荐

热门头条